On existential quantification and hyperspaces for logic on words

Luca Reggio

IRIF, Université Paris Diderot

Joint work with Mai Gehrke and Daniela Petrişan

Two approaches have been remarkably effective in the study of formal languages: the algebraic one, and the logical one. Whereas the former relies on the notions of recognition by a finite monoid and of syntactic monoid of a language, the latter is based on a semantic on finite words.

In particular, a fundamental rôle is played by *regular* languages, which can be characterised as those whose syntactic monoid is finite, or as those languages definable by means of a monadic second-order formula.

In the last years, a deep connection between Stone duality and the algebraic theory of formal languages has been exploited. Following these lines, in [1] we have investigated *beyond the regular context* the effect — at the level of the recognising objects — of applying a layer of (first-order) existential quantifier, i.e. passing from a language defined by a formula $\Phi(x)$ to the language defined by the formula $\exists x.\Phi(x)$.

In order to deal with non-regular languages, it is necessary to reconsider the notion of recognising object. This leads us to syntactic spaces for a language which are in particular Stone spaces. In this framework, it turns out that the existential quantification essentially corresponds to the classical topological construction of the *hyperspace* (or Vietoris space) of a topological space.

The operation on spaces corresponding to the existential quantification on languages can be regarded as a functor on the category of recognising objects. If time allows, we will show how the natural binary extension of this functor generalises a classical construction related to the concatenation of languages, namely the *Schützenberger product* of two monoids.

References

 M. Gehrke, D. Petrişan, and L. Reggio. The Schützenberger product for syntactic spaces. arXiv:1603.08264 [cs.L0], 2016.